3T6-Swiss albino Cells




















General information
Description | The 3T6-Swiss albino cell line originates from the tissue of Swiss albino mice, specifically developed for a broad range of virological and oncological research purposes. This fibroblast cell line is known for its susceptibility to various viruses, including murine sarcoma viruses, making it an invaluable tool in the study of viral oncogenesis and the transformational properties of oncogenes in a controlled environment. The robustness of 3T6-Swiss albino cells in culture allows for detailed genetic manipulation and analysis, facilitating advanced genetic studies that seek to understand the intricacies of cancer progression and viral infection mechanisms. In addition to its applications in virology, the 3T6-Swiss albino cell line is frequently used in pharmacological research. Its responsiveness to pharmaceutical agents makes it a suitable model for drug screening and toxicity testing. Researchers utilize these cells to examine the cellular responses to new compounds, evaluating their efficacy and safety before proceeding to more complex in vivo studies. The genetic stability of the 3T6-Swiss albino cell line over multiple passages supports consistent experimental results, which is crucial for the development of reliable therapeutic strategies. |
---|---|
Organism | Mouse |
Tissue | Embryonic |
Applications | This cell line is an optimal choice for transfection. |
Synonyms | 3T6 Swiss Albino, Swiss 3T6, NIH 3T6, 3T6, GM05862 |
Characteristics
Age | Embryo |
---|---|
Morphology | Fibroblast-like |
Cell type | Fibroblast |
Growth properties | Adherent |
Regulatory Data
Citation | 3T6-Swiss albino (Cytion catalog number 400104) |
---|---|
Biosafety level | 1 |
NCBI_TaxID | 10090 |
CellosaurusAccession | CVCL_0601 |
Biomolecular Data
Tumorigenic | No |
---|---|
Viruses | Negative for ectromelia virus (mousepox). |
Virus susceptibility | Herpes simplex, Vaccinia, Pseudorabies, Vesicular Stomatitis (Indiana) |
Reverse transcriptase | Negative |
Products | Collagen, hyaluronic acid |
Ploidy status | Karyotyping results revealed an unstable range of 78-81. A significant portion (21%) of the cells contained a terminal centromere on a large chromosome, and another 21% comprised minuscule chromosomes. |
Handling
Culture Medium | Ham's F12, w: 1.0 mM stable Glutamine, w: 1.0 mM Sodium pyruvate, w: 1.1 g/L NaHCO3 (Cytion article number 820600a) |
---|---|
Supplements | Supplement the medium with 10% FBS |
Dissociation Reagent | Accutase |
Subculturing | Remove the old medium from the adherent cells and wash them with PBS that lacks calcium and magnesium. For T25 flasks, use 3-5 ml of PBS, and for T75 flasks, use 5-10 ml. Then, cover the cells completely with Accutase, using 1-2 ml for T25 flasks and 2.5 ml for T75 flasks. Let the cells incubate at room temperature for 8-10 minutes to detach them. After incubation, gently mix the cells with 10 ml of medium to resuspend them, then centrifuge at 300xg for 3 minutes. Discard the supernatant, resuspend the cells in fresh medium, and transfer them into new flasks that already contain fresh medium. |
Split ratio | A ratio of 1:2 to 1:10 is recommended |
Seeding density | 1 x 10^4 cells/cm^2 will result in a confluent monolayer within 5 days. |
Fluid renewal | Every 3 to 4 days |
Post-Thaw Recovery | After thawing, plate the cells at 5 x 10^4 cells/cm^2 and allow the cells to recover from the freezing process and to adhere for at least 48 hours. |
Freeze medium | As a cryopreservation medium, use complete growth medium (including FBS) + 10% DMSO for adequate post-thaw viability, or CM-1 (Cytion catalog number 800100), which includes optimized osmoprotectants and metabolic stabilizers to enhance recovery and reduce cryo-induced stress. |
Thawing and Culturing Cells |
|
Quality control / Genetic profile / HLA
Sterility | Mycoplasma contamination is excluded using both PCR-based assays and luminescence-based mycoplasma detection methods. To ensure there is no bacterial, fungal, or yeast contamination, cell cultures are subjected to daily visual inspections. |
---|
Required products
One of its notable advantages is the ability to support cell growth without the need for serum supplementation. This eliminates potential interference caused by serum components, ensuring consistent and reliable experimental results. By providing a serum-free culture environment, Ham's F-12 Medium offers researchers greater control over their investigations.
Another key feature of Ham's F-12 Medium is its suitability for single-cell plating. This makes it an excellent choice for a variety of cell lines, including CHO cells, lung cells, and mouse L cells. The medium's optimized nutrient composition facilitates efficient attachment and growth of individual cells, enabling the establishment of homogeneous cell cultures with improved reproducibility.
Moreover, Ham's F-12 Medium has gained recognition as the preferred medium for the Clonal Toxicity Assay (CTA). This assay plays a critical role in assessing the cytotoxic effects of substances on cells. By utilizing Ham's F-12 Medium in the CTA, researchers can accurately evaluate the impact of various compounds or treatments on individual cells, providing valuable insights into toxicological profiles.
Quality control
pH = 7.2 +/
- 0.02 at 20-25°C.
Each lot has been tested for sterility and absence of mycoplasma and bacteria.
Maintenance
Keep refrigerated at +2°C to +8°C in the dark. Freezing and warming up to +37° C minimize the quality of the product.
Do not heat the medium to more than 37° C or use uncontrollable sources of heat (e.g., microwave appliances).
If only a part of the medium is to be used, remove this amount from the bottle and warm it up at room temperature.
Shelf life for any medium except for the basic medium is 8 weeks from the date of manufacture.
Composition
Components
mg/L
Inorganic Salts
Calcium chloride x 2H2O
44,00
Copper(II) sulfate x 5H2O
0,00
Iron (II) sulfate x 7H2O
0,83
Magnesium chloride x 6H2O
122,00
Potassium chloride
223,65
Sodium chloride
7599,00
di-Sodium hydrogen phosphateanhydrous
142,04
Zinc sulfate x 7H2O
0,86
Other Components
D(+)-Glucose anhydrous
1801,60
Hypoxanthine
4,08
Linoleic acid
0,08
DL-α-Lipoic acid
0,21
Phenol red
1,20
Putrescine x 2HCl
0,16
Sodium pyruvate
110,00
Thymidine
0,73
NaHCO3
1176,00
Amino Acids
L-Alanine
8,91
L-Arginine x HCl
210,70
L-Asparagine x H2O
15,01
L-Aspartic acid
13,31
L-Cysteine x HCl x H2O
35,12
L-Alanyl-L-Glutamine
217,30
L-Glutamic acid
14,71
Glycine
7,51
L-Histidine x HCl x H2O
20,96
L-Isoleucine
3,94
L-Leucine
13,12
L-Lysine x HCl
36,54
L-Methionine
4,48
L-Phenylalanine
4,96
L-Proline
34,53
L-Serine
10,51
L-Threonine
11,91
L-Tryptophan
2,04
L-Tyrosine
5,44
L-Valine
11,71
Vitamins
D(+)-Biotin
0,01
D-Calcium pantothenate
0,24
Choline chloride
13,96
Folic acid
1,32
myo-Inositol
18,02
Nicotinamide
0,04
Pyridoxine x HCl
0,06
Riboflavin
0,04
Thiamine x HCl
0,34
Vitamin B12
1,36
- A Gentle Alternative to Trypsin
Accutase is a cell detachment solution that is revolutionizing the cell culture industry. It is a mix of proteolytic and collagenolytic enzymes that mimics the action of trypsin and collagenase. Unlike trypsin, Accutase does not contain any mammalian or bacterial components and is much gentler on cells, making it an ideal solution for the routine detachment of cells from standard tissue culture plasticware and adhesion coated plasticware. In this blog post, we will explore the benefits and uses of Accutase and how it is changing the game in cell culture.
Advantages of Accutase
Accutase has several advantages over traditional trypsin solutions. Firstly, it can be used whenever gentle and efficient detachment of any adherent cell line is needed, making it a direct replacement for trypsin. Secondly, Accutase works extremely well on embryonic and neuronal stem cells, and it has been shown to maintain the viability of these cells after passaging. Thirdly, Accutase preserves most epitopes for subsequent flow cytometry analysis, making it ideal for cell surface marker analysis.
Additionally, Accutase does not need to be neutralized when passaging adherent cells. The addition of more media after the cells are split dilutes Accutase so it is no longer able to detach cells. This eliminates the need for an inactivation step and saves time for cell culture technicians. Finally, Accutase does not need to be aliquoted, and a bottle is stable in the refrigerator for 2 months.
Applications of Accutase
Accutase is a direct replacement for trypsin solution and can be used for the passaging of cell lines. Additionally, Accutase performs well when detaching cells for the analysis of many cell surface markers using flow cytometry and for cell sorting. Other downstream applications of Accutase treatment include analysis of cell surface markers, virus growth assay, cell proliferation, tumor cell migration assays, routine cell passage, production scale-up (bioreactor), and flow cytometry.
Composition of Accutase
Accutase contains no mammalian or bacterial components and is a natural enzyme mixture with proteolytic and collagenolytic enzyme activity. It is formulated at a much lower concentration than trypsin and collagenase, making it less toxic and gentler, but just as effective.
Efficiency of Accutase
Accutase has been shown to be efficient in detaching primary and stem cells and maintaining high cell viability compared to animal origin enzymes such as trypsin. 100% of cells are recovered after 10 minutes, and there is no harm in leaving cells in Accutase for up to 45 minutes, thanks to autodigestion of Accutase.
In summary
In conclusion, Accutase is a powerful solution that is changing the game in cell culture. With its gentle nature, efficiency, and versatility, Accutase is the ideal alternative to trypsin. If you are looking for a reliable and efficient solution for cell detachment, Accutase is the solution for you.
Phosphate-buffered saline (PBS) is a widely used buffer solution in biological and chemical research. It plays a crucial role in maintaining the pH balance and osmolarity during various experimental procedures, including tissue processing and cell culture. Our PBS solution is meticulously formulated with high-purity ingredients to ensure stability and reliability in every experiment. The osmolarity and ion concentrations of our PBS closely mimic those of the human body, making it isotonic and non-toxic to most cells.
Composition of Our PBS Solution
Our PBS solution is a pH-adjusted blend of ultrapure-grade phosphate buffers and saline solutions. At a 1X working concentration, it contains:
8000 mg/L Sodium chloride (NaCl)
200 mg/L Potassium chloride (KCl)
1150 mg/L Sodium phosphate dibasic anhydrous (Na2HPO4)
200 mg/L Potassium phosphate monobasic anhydrous (KH2PO4)
This composition ensures an optimal pH and ionic balance, suitable for a wide range of biological applications.
Applications of Our PBS Solution
Our PBS solution is ideal for various applications in biological research. Its isotonic and non-toxic properties make it suitable for substance dilution and cell container rinsing. PBS solutions containing EDTA are effective for disengaging attached and clumped cells. However, divalent metals such as zinc should not be added to PBS, as this can cause precipitation. In such cases, Good's buffers are recommended. Additionally, our PBS solution is an acceptable alternative to viral transport medium for the transport and storage of RNA viruses, including SARS-CoV-2.
Quality Control
Sterile-filtered
Storage and Shelf Life
Store at +2°C to +25°C, protected from light.
Once opened, store at 2°C to 25°C and use within 24 months.
Shipping Conditions
Ambient temperature
Maintenance
Keep refrigerated at +2°C to +8°C in the dark. Avoid freezing and frequent warming to +37°C, as it reduces product quality.
Do not heat the medium beyond 37°C or use uncontrolled heat sources such as microwave appliances.
If only part of the medium is to be used, remove the required amount and warm it to room temperature before use.
Composition
Category
Components
Concentration (mg/L)
Salts
Potassium chloride
200
Potassium phosphate monobasic anhydrous
200
Sodium chloride
8000
Sodium phosphate dibasic anhydrous
1150
Material Transfer Agreement
If you intend to use Cytion cell lines solely for internal research at a single research site, please complete and sign our Material Transfer Agreement (MTA) and submit it along with your order.
For any commercial applications - including but not limited to fee-for-service work, quality control testing, product release, diagnostic use, or regulatory studies - please complete the Intended Use Form so we can prepare a suitable agreement tailored to your project.
Please note: The MTA applies only to certain cell lines. If this notice and the MTA document appear on a product page, the agreement is applicable. For cell lines not covered by the MTA, no reference to the agreement will be shown. The MTA is not valid for customers in the Americas, China, or Taiwan. Please contact our U.S. entity to receive the appropriate agreement.