MRC-5 Cells
Insights on MRC-5 cells
Description | MRC-5 cells, a human lung fibroblast cell line derived from the lung tissue of a 14-week-old male fetus in 1966, are extensively utilized in the production of certain vaccines, including those for hepatitis A, polio, rabies, and more. The susceptibility to various human viruses, notably human poliovirus 1, herpes simplex virus, and vesicular stomatitis virus underscores the role of MRC5 cells in the discovery of antivirals, viral vaccines, vaccine safety and virus replication. MRC-5 and WI-38 cell lines are still used in producing vaccines for varicella, rubella, hepatitis A, and a version of rabies vaccine today. Recently, MRC-5 cells were modified to express the ACE2 receptor, and have been key in SARS research. The modified MRC5 human ace2 cells allow scientists to study how the SARS-CoV virus enters and replicates in host cells. This work has been vital for understanding the virus's behavior and developing targeted antiviral agents and treatments. The MRC5 fetal cell line's utility extends beyond vaccine production to include potential roles in cancer research, with the cell line being employed in studies exploring the tumor microenvironment and cancer cell interactions, owing to their capability to differentiate into multiple cell types, including osteocytes and chondrocytes. This has led to speculation about their similarity to mesenchymal stem cells (MSCs), given their fibroblast-like morphology and maintenance of a normal diploid karyotype over extensive in vitro expansion. The ethical considerations surrounding fetal cell lines and stem cells, including their tissue origins and the use of materials from umbilical cords or aborted human fetuses, continue to be debated in the scientific community. Although cell cultures from human fetal tissue, used in vaccine development to cultivate viruses, have raised ethical, religious, and moral concerns, vaccines manufactured using fetal cells are clinically safe and effective, do not contain any original fetal cells or tissue, and can be used in good conscience according to the Catholic Church. |
---|---|
Organism | Human |
Tissue | Lung |
Applications | Vaccine production |
Synonyms | MRC5, MRC 5, MRCV, MRC-V, Medical Research Council cell strain-5 |
Details
Age | Fetus |
---|---|
Gender | Male |
Cell type | Fibroblast |
Growth properties | Adherent |
Documentation
Citation | MRC-5 (Cytion catalog number 300395) |
---|---|
Biosafety level | 1 |
Genetic characteristics of the MRC5 cell line
Virus susceptibility | Not susceptible to SARS coronavirus 2 (SARS-CoV-2) infection (COVID-19) |
---|---|
Karyotype | MRC5 is a diploid cell line with a modal chromosome number of 46. |
Handling
Culture Medium | EMEM, w: 2 mM L-Glutamine, w: 1.5 g/L NaHCO3, w: EBSS, w: 1 mM Sodium pyruvate, w: NEAA (Cytion article number 820100c) |
---|---|
Medium supplements | Supplement the medium with 10% FBS |
Passaging solution | Accutase |
Subculturing | Remove the old medium from the adherent cells and wash them with PBS that lacks calcium and magnesium. For T25 flasks, use 3-5 ml of PBS, and for T75 flasks, use 5-10 ml. Then, cover the cells completely with Accutase, using 1-2 ml for T25 flasks and 2.5 ml for T75 flasks. Let the cells incubate at room temperature for 8-10 minutes to detach them. After incubation, gently mix the cells with 10 ml of medium to resuspend them, then centrifuge at 300xg for 3 minutes. Discard the supernatant, resuspend the cells in fresh medium, and transfer them into new flasks that already contain fresh medium. |
Freeze medium | CM-1 (Cytion catalog number 800100) or CM-ACF (Cytion catalog number 806100) |
Handling of cryopreserved cultures |
|
Quality control of MRC-5 fetal cells
Sterility | Mycoplasma contamination is excluded using both PCR-based assays and luminescence-based mycoplasma detection methods. To ensure there is no bacterial, fungal, or yeast contamination, cell cultures are subjected to daily visual inspections. |
---|---|
STR profile |
Amelogenin: x,y
CSF1PO: 11. Dez
D13S317: Nov 14
D16S539: 09. Nov
D5S818: 11. Dez
D7S820: 10. Nov
TH01: 8
TPOX: 8
vWA: 15
D3S1358: 15.17
D21S11: 31.2
D18S51: 15.21
Penta E: Dez 16
Penta D: 12
D8S1179: 13
FGA: 21.23
D6S1043: Nov 19
D2S1338: 20
D12S391: 20.22
D19S433: 14.15
|
HLA alleles |
A*: 02:01:01, 29:02:01
B*: 07:02:01, 44:02:01
C*: 05:01:01, 07:02:01
DRB1*: 04:08:01, 15:01:01G
DQA1*: 01:02:01, 03:03:01
DQB1*: 03:01:01, 06:02:01
DPB1*: 04:01:01
E: 01:01:01
|
Required products
- A Gentle Alternative to Trypsin
Accutase is a cell detachment solution that is revolutionizing the cell culture industry. It is a mix of proteolytic and collagenolytic enzymes that mimics the action of trypsin and collagenase. Unlike trypsin, Accutase does not contain any mammalian or bacterial components and is much gentler on cells, making it an ideal solution for the routine detachment of cells from standard tissue culture plasticware and adhesion coated plasticware. In this blog post, we will explore the benefits and uses of Accutase and how it is changing the game in cell culture.
Advantages of Accutase
Accutase has several advantages over traditional trypsin solutions. Firstly, it can be used whenever gentle and efficient detachment of any adherent cell line is needed, making it a direct replacement for trypsin. Secondly, Accutase works extremely well on embryonic and neuronal stem cells, and it has been shown to maintain the viability of these cells after passaging. Thirdly, Accutase preserves most epitopes for subsequent flow cytometry analysis, making it ideal for cell surface marker analysis.
Additionally, Accutase does not need to be neutralized when passaging adherent cells. The addition of more media after the cells are split dilutes Accutase so it is no longer able to detach cells. This eliminates the need for an inactivation step and saves time for cell culture technicians. Finally, Accutase does not need to be aliquoted, and a bottle is stable in the refrigerator for 2 months.
Applications of Accutase
Accutase is a direct replacement for trypsin solution and can be used for the passaging of cell lines. Additionally, Accutase performs well when detaching cells for the analysis of many cell surface markers using flow cytometry and for cell sorting. Other downstream applications of Accutase treatment include analysis of cell surface markers, virus growth assay, cell proliferation, tumor cell migration assays, routine cell passage, production scale-up (bioreactor), and flow cytometry.
Composition of Accutase
Accutase contains no mammalian or bacterial components and is a natural enzyme mixture with proteolytic and collagenolytic enzyme activity. It is formulated at a much lower concentration than trypsin and collagenase, making it less toxic and gentler, but just as effective.
Efficiency of Accutase
Accutase has been shown to be efficient in detaching primary and stem cells and maintaining high cell viability compared to animal origin enzymes such as trypsin. 100% of cells are recovered after 10 minutes, and there is no harm in leaving cells in Accutase for up to 45 minutes, thanks to autodigestion of Accutase.
In summary
In conclusion, Accutase is a powerful solution that is changing the game in cell culture. With its gentle nature, efficiency, and versatility, Accutase is the ideal alternative to trypsin. If you are looking for a reliable and efficient solution for cell detachment, Accutase is the solution for you.
Key features of Freeze Medium CM-1 include:
Broad Compatibility: Effective for a wide range of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-1 is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-1 for Freezing Cells
To use CM-1 for freezing both adherent and suspension cells, follow these steps:
For adherent cells, wash and dissociate them from the culture substrate. For suspension cells, proceed directly to the next step.
Count the cells to ensure they are at the proper concentration.
Centrifuge the cells to pellet them, then resuspend in CM-1 freeze medium.
Transfer the resuspended cells into cryovials.
Use a slow-freezing method before transferring the cells to long-term storage.
🥶 Method
🔍 Description
💡 Steps
❄️
Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1️⃣ Place cells in freeze medium in a 4°C freezer for 40 minutes.
2️⃣ Transfer to a -80°C freezer for 24 hours.
3️⃣ Store cells in liquid nitrogen for long-term preservation.
🧊
Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1️⃣ Prepare cells in cryovials with freeze medium.
2️⃣ Place cryovials in Mr. Frosty container.
3️⃣ Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬
Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1️⃣ Program the device to gradually decrease the temperature.
2️⃣ Place prepared cells in the freezer.
3️⃣ After the freezing cycle, transfer cells to liquid nitrogen.
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains FBS, DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-1 offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.
Key features of Freeze Medium CM-1 include:
Broad Compatibility: Effective for a wide range of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-1 is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-1 for Freezing Cells
To use CM-1 for freezing both adherent and suspension cells, follow these steps:
For adherent cells, wash and dissociate them from the culture substrate. For suspension cells, proceed directly to the next step.
Count the cells to ensure they are at the proper concentration.
Centrifuge the cells to pellet them, then resuspend in CM-1 freeze medium.
Transfer the resuspended cells into cryovials.
Use a slow-freezing method before transferring the cells to long-term storage.
🥶 Method
🔍 Description
💡 Steps
❄️
Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1️⃣ Place cells in freeze medium in a 4°C freezer for 40 minutes.
2️⃣ Transfer to a -80°C freezer for 24 hours.
3️⃣ Store cells in liquid nitrogen for long-term preservation.
🧊
Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1️⃣ Prepare cells in cryovials with freeze medium.
2️⃣ Place cryovials in Mr. Frosty container.
3️⃣ Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬
Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1️⃣ Program the device to gradually decrease the temperature.
2️⃣ Place prepared cells in the freezer.
3️⃣ After the freezing cycle, transfer cells to liquid nitrogen.
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains FBS, DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-1 offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.
Key features of Freeze Medium CM-1 include:
Broad Compatibility: Effective for a wide range of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-1 is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-1 for Freezing Cells
To use CM-1 for freezing both adherent and suspension cells, follow these steps:
For adherent cells, wash and dissociate them from the culture substrate. For suspension cells, proceed directly to the next step.
Count the cells to ensure they are at the proper concentration.
Centrifuge the cells to pellet them, then resuspend in CM-1 freeze medium.
Transfer the resuspended cells into cryovials.
Use a slow-freezing method before transferring the cells to long-term storage.
🥶 Method
🔍 Description
💡 Steps
❄️
Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1️⃣ Place cells in freeze medium in a 4°C freezer for 40 minutes.
2️⃣ Transfer to a -80°C freezer for 24 hours.
3️⃣ Store cells in liquid nitrogen for long-term preservation.
🧊
Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1️⃣ Prepare cells in cryovials with freeze medium.
2️⃣ Place cryovials in Mr. Frosty container.
3️⃣ Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬
Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1️⃣ Program the device to gradually decrease the temperature.
2️⃣ Place prepared cells in the freezer.
3️⃣ After the freezing cycle, transfer cells to liquid nitrogen.
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains FBS, DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-1 offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.
Key Features of Freeze Medium CM-ACF
Serum-Free Formulation: Eliminates the variability and risks associated with serum, providing a defined and controlled environment for a wide array of cell types, including primary cells, stem cells, and established cell lines.
Broad Compatibility: Effective for a wide array of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-ACF is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-ACF for Freezing Cells
To use CM-ACF for freezing both adherent and suspension cells, follow these steps:
Preparation:
For adherent cells: Wash and dissociate them from the culture substrate.
For suspension cells: Proceed directly to the next step.
Cell Counting: Ensure cells are at the proper concentration.
Centrifugation: Pellet the cells and resuspend them in CM-ACF freeze medium.
Cryovial Transfer: Transfer the resuspended cells into cryovials.
Freezing Process: Use a slow-freezing method before transferring the cells to long-term storage.
Freezing Methods
Method
Description
Steps
❄️ Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1. Place cells in freeze medium in a 4°C freezer for 40 minutes. 2. Transfer to a -80°C freezer for 24 hours. 3. Store cells in liquid nitrogen for long-term preservation.
🧊 Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1. Prepare cells in cryovials with freeze medium. 2. Place cryovials in Mr. Frosty container. 3. Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬 Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1. Program the device to gradually decrease the temperature. 2. Place prepared cells in the freezer. 3. After the freezing cycle, transfer cells to liquid nitrogen.
Long-Term Storage
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-ACF offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.
Key Features of Freeze Medium CM-ACF
Serum-Free Formulation: Eliminates the variability and risks associated with serum, providing a defined and controlled environment for a wide array of cell types, including primary cells, stem cells, and established cell lines.
Broad Compatibility: Effective for a wide array of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-ACF is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-ACF for Freezing Cells
To use CM-ACF for freezing both adherent and suspension cells, follow these steps:
Preparation:
For adherent cells: Wash and dissociate them from the culture substrate.
For suspension cells: Proceed directly to the next step.
Cell Counting: Ensure cells are at the proper concentration.
Centrifugation: Pellet the cells and resuspend them in CM-ACF freeze medium.
Cryovial Transfer: Transfer the resuspended cells into cryovials.
Freezing Process: Use a slow-freezing method before transferring the cells to long-term storage.
Freezing Methods
Method
Description
Steps
❄️ Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1. Place cells in freeze medium in a 4°C freezer for 40 minutes. 2. Transfer to a -80°C freezer for 24 hours. 3. Store cells in liquid nitrogen for long-term preservation.
🧊 Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1. Prepare cells in cryovials with freeze medium. 2. Place cryovials in Mr. Frosty container. 3. Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬 Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1. Program the device to gradually decrease the temperature. 2. Place prepared cells in the freezer. 3. After the freezing cycle, transfer cells to liquid nitrogen.
Long-Term Storage
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-ACF offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.
Key Features of Freeze Medium CM-ACF
Serum-Free Formulation: Eliminates the variability and risks associated with serum, providing a defined and controlled environment for a wide array of cell types, including primary cells, stem cells, and established cell lines.
Broad Compatibility: Effective for a wide array of cell types, including primary cells, stem cells, and established cell lines.
High Viability: Optimized to maximize post-thaw cell recovery and viability, ensuring reliable experimental outcomes.
Ready-to-Use: Conveniently prepared and sterilized for immediate application, reducing preparation time and risk of contamination.
Enhanced Stability: Maintains consistent performance under standard cryopreservation conditions, ensuring reproducible results.
Long Shelf Life: CM-ACF is a serum-containing, ready-to-use cryopreservation medium that can be stored in the refrigerator for up to one year.
Using CM-ACF for Freezing Cells
To use CM-ACF for freezing both adherent and suspension cells, follow these steps:
Preparation:
For adherent cells: Wash and dissociate them from the culture substrate.
For suspension cells: Proceed directly to the next step.
Cell Counting: Ensure cells are at the proper concentration.
Centrifugation: Pellet the cells and resuspend them in CM-ACF freeze medium.
Cryovial Transfer: Transfer the resuspended cells into cryovials.
Freezing Process: Use a slow-freezing method before transferring the cells to long-term storage.
Freezing Methods
Method
Description
Steps
❄️ Manual Freezing
A step-by-step method involving gradual temperature reduction to ensure cell viability.
1. Place cells in freeze medium in a 4°C freezer for 40 minutes. 2. Transfer to a -80°C freezer for 24 hours. 3. Store cells in liquid nitrogen for long-term preservation.
🧊 Using Mr. Frosty
A convenient device that allows for controlled freezing rates without electrical power.
1. Prepare cells in cryovials with freeze medium. 2. Place cryovials in Mr. Frosty container. 3. Store at -80°C for 24 hours before transferring to liquid nitrogen.
🧬 Controlled-Rate Freezer
A high-precision freezer by Thermo Fisher or other manufacturers designed for controlled temperature reduction.
1. Program the device to gradually decrease the temperature. 2. Place prepared cells in the freezer. 3. After the freezing cycle, transfer cells to liquid nitrogen.
Long-Term Storage
Store the cryovials at temperatures below -130°C or in liquid nitrogen for long-term preservation.
Ingredients
Contains DMSO, Glucose, Salts
Buffering capacity: pH = 7.2 to 7.6
Cytion’s Freeze Medium CM-ACF offers a reliable solution for cryopreservation, ensuring high cell viability and functionality post-thaw for a wide range of research applications.