BJ Fibroblast Cells
Overview of BJ cells
Description | BJ cells, derived from neonatal male foreskin, are human fibroblasts, which are a type of cell found in connective tissue. They are often used in biological and medical research due to their ability to proliferate and their human origin, making them relevant for studying human biology and disease. BJ cells, derived from human skin fibroblasts, are primarily used in studies related to cellular responses to oxidative stress, contributing to our understanding of aging, disease mechanisms, and cellular defense against oxidative damage. The cells further present a viable alternative to mouse BALB/c 3T3 cells for in vitro toxicological evaluations, particularly in the Neutral Red Uptake (NRU) assay. This assay is widely used to assess cytotoxic effects by measuring cell viability through the uptake of neutral red dye. The absence of strong telomerase activity in the BJ human foreskin fibroblasts, independent of hTERT, highlights their role in studying premature senescence, elongation of telomeres, and the effects of hyperoxia on telomere length. The human cell lines BJ and HaCaT are often used together in dermatological research due to their complementary nature in representing key aspects of skin physiology. HaCaT cells, being human keratinocytes, serve as a model for the epidermal layer of the skin, while BJ cells, derived from human fibroblasts, represent the dermal layer. This combination allows for a comprehensive study of skin responses at both the epidermal and dermal levels, making them invaluable for investigating skin aging, wound healing, and the effects of various treatments on skin health. In summary, BJ cells, also known as human BJ fibroblasts, serve as a versatile model in biological research, offering insights into the impact of environmental exposures, cellular senescence, and radical biology. |
---|---|
Organism | Human |
Tissue | Foreskin |
Synonyms | FF-WT-BJ, BJ1 |
Details
Age | Less than 1 month |
---|---|
Gender | Male |
Ethnicity | Caucasian |
Morphology | Fibroblast |
Cell type | Fibroblast of foreskin |
Growth properties | Adherent |
Documentation about the BJ skin cell line
Citation | BJ (Cytion catalog number 305222) |
---|---|
Biosafety level | 1 |
Genetic characteristics
Karyotype | BJ cells maintain a normal diploid karyotype. However, beyond a certain population doubling, an abnormal karyotype indicative of genetic alterations may emerge. |
---|
Culturing guidelines
Culture Medium | DMEM, w: 4.5 g/L Glucose, w: 4 mM L-Glutamine, w: 1.5 g/L NaHCO3, w: 1.0 mM Sodium pyruvate (Cytion article number 820300a) |
---|---|
Medium supplements | Supplement the medium with 10% FBS, 20 ng/mL bFGF |
Passaging solution | Accutase |
Subculturing | Remove the old medium from the adherent cells and wash them with PBS that lacks calcium and magnesium. For T25 flasks, use 3-5 ml of PBS, and for T75 flasks, use 5-10 ml. Then, cover the cells completely with Accutase, using 1-2 ml for T25 flasks and 2.5 ml for T75 flasks. Let the cells incubate at room temperature for 8-10 minutes to detach them. After incubation, gently mix the cells with 10 ml of medium to resuspend them, then centrifuge at 300xg for 3 minutes. Discard the supernatant, resuspend the cells in fresh medium, and transfer them into new flasks that already contain fresh medium. |
Freeze medium | CM-1 (Cytion catalog number 800100) |
Handling of cryopreserved cultures |
|
Quality assesment of the BJ fibroblast cell line
Sterility | Mycoplasma contamination is excluded using both PCR-based assays and luminescence-based mycoplasma detection methods. To ensure there is no bacterial, fungal, or yeast contamination, cell cultures are subjected to daily visual inspections. |
---|---|
STR profile |
Amelogenin: x,y
CSF1PO: 10,12
D13S317: 8,9
D16S539: 9,13
D5S818: 12
D7S820: 11,12
TH01: 7,8
TPOX: 10,11
vWA: 16,18
D3S1358: 14,16
D21S11: 29
D18S51: 17,19
Penta E: 7,17
Penta D: 12,13
D8S1179: 9,11
FGA: 22,23
|
Required products
One of its notable advantages is the ability to support cell growth without the need for serum supplementation. This eliminates potential interference caused by serum components, ensuring consistent and reliable experimental results. By providing a serum-free culture environment, Ham's F-12 Medium offers researchers greater control over their investigations.
Another key feature of Ham's F-12 Medium is its suitability for single-cell plating. This makes it an excellent choice for a variety of cell lines, including CHO cells, lung cells, and mouse L cells. The medium's optimized nutrient composition facilitates efficient attachment and growth of individual cells, enabling the establishment of homogeneous cell cultures with improved reproducibility.
Moreover, Ham's F-12 Medium has gained recognition as the preferred medium for the Clonal Toxicity Assay (CTA). This assay plays a critical role in assessing the cytotoxic effects of substances on cells. By utilizing Ham's F-12 Medium in the CTA, researchers can accurately evaluate the impact of various compounds or treatments on individual cells, providing valuable insights into toxicological profiles.
Quality control
pH = 7.2 +/
- 0.02 at 20-25°C.
Each lot has been tested for sterility and absence of mycoplasma and bacteria.
Maintenance
Keep refrigerated at +2°C to +8°C in the dark. Freezing and warming up to +37° C minimize the quality of the product.
Do not heat the medium to more than 37° C or use uncontrollable sources of heat (e.g., microwave appliances).
If only a part of the medium is to be used, remove this amount from the bottle and warm it up at room temperature.
Shelf life for any medium except for the basic medium is 8 weeks from the date of manufacture.
Composition
Components
mg/L
Inorganic Salts
Calcium chloride x 2H2O
44,00
Copper(II) sulfate x 5H2O
0,00
Iron (II) sulfate x 7H2O
0,83
Magnesium chloride x 6H2O
122,00
Potassium chloride
223,65
Sodium chloride
7599,00
di-Sodium hydrogen phosphateanhydrous
142,04
Zinc sulfate x 7H2O
0,86
Other Components
D(+)-Glucose anhydrous
1801,60
Hypoxanthine
4,08
Linoleic acid
0,08
DL-α-Lipoic acid
0,21
Phenol red
1,20
Putrescine x 2HCl
0,16
Sodium pyruvate
110,00
Thymidine
0,73
NaHCO3
1176,00
Amino Acids
L-Alanine
8,91
L-Arginine x HCl
210,70
L-Asparagine x H2O
15,01
L-Aspartic acid
13,31
L-Cysteine x HCl x H2O
35,12
L-Alanyl-L-Glutamine
217,30
L-Glutamic acid
14,71
Glycine
7,51
L-Histidine x HCl x H2O
20,96
L-Isoleucine
3,94
L-Leucine
13,12
L-Lysine x HCl
36,54
L-Methionine
4,48
L-Phenylalanine
4,96
L-Proline
34,53
L-Serine
10,51
L-Threonine
11,91
L-Tryptophan
2,04
L-Tyrosine
5,44
L-Valine
11,71
Vitamins
D(+)-Biotin
0,01
D-Calcium pantothenate
0,24
Choline chloride
13,96
Folic acid
1,32
myo-Inositol
18,02
Nicotinamide
0,04
Pyridoxine x HCl
0,06
Riboflavin
0,04
Thiamine x HCl
0,34
Vitamin B12
1,36
- A Gentle Alternative to Trypsin
Accutase is a cell detachment solution that is revolutionizing the cell culture industry. It is a mix of proteolytic and collagenolytic enzymes that mimics the action of trypsin and collagenase. Unlike trypsin, Accutase does not contain any mammalian or bacterial components and is much gentler on cells, making it an ideal solution for the routine detachment of cells from standard tissue culture plasticware and adhesion coated plasticware. In this blog post, we will explore the benefits and uses of Accutase and how it is changing the game in cell culture.
Advantages of Accutase
Accutase has several advantages over traditional trypsin solutions. Firstly, it can be used whenever gentle and efficient detachment of any adherent cell line is needed, making it a direct replacement for trypsin. Secondly, Accutase works extremely well on embryonic and neuronal stem cells, and it has been shown to maintain the viability of these cells after passaging. Thirdly, Accutase preserves most epitopes for subsequent flow cytometry analysis, making it ideal for cell surface marker analysis.
Additionally, Accutase does not need to be neutralized when passaging adherent cells. The addition of more media after the cells are split dilutes Accutase so it is no longer able to detach cells. This eliminates the need for an inactivation step and saves time for cell culture technicians. Finally, Accutase does not need to be aliquoted, and a bottle is stable in the refrigerator for 2 months.
Applications of Accutase
Accutase is a direct replacement for trypsin solution and can be used for the passaging of cell lines. Additionally, Accutase performs well when detaching cells for the analysis of many cell surface markers using flow cytometry and for cell sorting. Other downstream applications of Accutase treatment include analysis of cell surface markers, virus growth assay, cell proliferation, tumor cell migration assays, routine cell passage, production scale-up (bioreactor), and flow cytometry.
Composition of Accutase
Accutase contains no mammalian or bacterial components and is a natural enzyme mixture with proteolytic and collagenolytic enzyme activity. It is formulated at a much lower concentration than trypsin and collagenase, making it less toxic and gentler, but just as effective.
Efficiency of Accutase
Accutase has been shown to be efficient in detaching primary and stem cells and maintaining high cell viability compared to animal origin enzymes such as trypsin. 100% of cells are recovered after 10 minutes, and there is no harm in leaving cells in Accutase for up to 45 minutes, thanks to autodigestion of Accutase.
In summary
In conclusion, Accutase is a powerful solution that is changing the game in cell culture. With its gentle nature, efficiency, and versatility, Accutase is the ideal alternative to trypsin. If you are looking for a reliable and efficient solution for cell detachment, Accutase is the solution for you.