K562 Cells | 300224

General information

Description	The K562 cell line, originating from the bone marrow of a 53-year-old female with chronic myelogenous leukemia, serves as a cornerstone in various research fields such as immunology, tumor immunology, and immune system disorder research. Human K-562 cells are widely used in studies involving immune system interactions, particularly with effector cells like natural killer cells (NK). This is due to their unique characteristics, such as the expression of specific antigens that can be recognized by NK cells. Exploring the interaction between NK cells and cancerous cell lines like K562 offers insights into immune defense mechanisms. NK cells' ability to recognize and respond to K562 cells varies with the presence of specific markers, which fluctuate throughout the K562 cell cycle. K562 cells are characterized by the presence of the Philadelphia chromosome, which results from a translocation between chromosomes 9 and 22, creating the BCR-ABL fusion gene. This fusion gene is not a normal ABL transcript but a mutated form that is constitutively active and leads to uncontrolled cell proliferation. Analyzing ABL transcripts in K562 cells sheds light on leukemia's molecular dynamics and immune evasion strategies. K562 cells are crucial for understanding the cell cycle, particularly for analyzing cell cycle phases and distributions. This analysis is essential for evaluating the impact of ABL gene expression and the associated decrease in ABL fusion transcripts. Furthermore, K562 cells are valuable in assays assessing the cytotoxic effects of FGFR inhibitors and the activity of epigenetic enzymes, highlighting their significance in elucidating cell signaling pathways and the mechanisms of action of various therapeutic agents. The versatility of K562 cells, ranging from their role in enzyme activity assays to their application in immunological studies with natural killer (NK) cells, emphasizes their widespread utility in the scientific realm. This adaptability highlights their significance in bridging the gap between fundam
Organism	Human
Tissue	Bone marrow
Disease	Chronic myeloid leukemia
Synonyms	K562, K.562, K 562, KO, GM05372, GM05372E

Characteristics

Age	53 years
Gender	Female
Ethnicity	Caucasian

K562 Cells | 300224

Morphology	Round cells
Cell type	Lymphoblast
Growth properties	Suspension

Identifiers / Biosafety / Citation

Citation	K562 (Cytion catalog number 300224)

Biosafety level 1

Expression / Mutation

Antigen expression	CD7 (25%)
lsoenzymes	G6PD, B, AK-1, 1, ES-D, 1, GLO-1, 2, PGM1, 0, PGM3, 1, Me-2, 0
Oncogenes	BCR-ABL1
Tumorigenic	Yes, in nude mice.
Reverse transcriptase	Negative

Handling

Culture Medium	RPMI 1640, w: 2.1 mM stable Glutamine, w: 2.0 g/L NaHCO3 (Cytion article number 820700a)
Medium supplements	Supplement the medium with 10% FBS
Subculturing	Maintain cultures by periodically adding or replacing the medium. Initiate cultures with a density of 2 x 10^5 cells/ml and keep the cell concentration within the range of 1 x 10^5 to 1 x 10^6 cells/ml for optimal growth.
Seeding density	1 x 10^5 cells/ml

Product sheet

K562 Cells | 300224

Fluid renewal	Every 2 days
Freezing recovery	Please allow cells to recover for roughly 24 to 48 hours after thawing.
Freeze medium	CM-1 (Cytion catalog number 800100) or CM-ACF (Cytion catalog number 806100)
Handling of cryopreserved cultures	1. Confirm that the vial remains deeply frozen upon delivery, as cells are shipped on dry ice to maintain optimal temperatures during transit.
	2. Upon receipt, either store the cryovial immediately at temperatures below -150?C to ensure the preservation of cellular integrity, or proceed to step 3 if immediate culturing is required.
	3. For immediate culturing, swiftly thaw the vial by immersing it in a 37?C water bath with clean water and an antimicrobial agent, agitating gently for 40-60 seconds until a small ice clump remains.
	4. Perform all subsequent steps under sterile conditions in a flow hood, disinfecting the cryovial with 70% ethanol before opening.
	5. Carefully open the disinfected vial and transfer the cell suspension into a 15 ml centrifuge tube containing 8 ml of room-temperature culture medium, mixing gently.
	6. Centrifuge the mixture at 300 x g for 3 minutes to separate the cells and carefully discard the supernatant containing residual freezing medium. Optionally, skip centrifugation but remove any remaining freezing medium after 24 hours.
	 Gently resuspend the cell pellet in 10 ml of fresh culture medium. For adherent cells, divide the suspension between two T25 culture flasks; for suspension cultures, transfer all the medium into one T25 flask to promote effective cell interaction and growth.
	8. Adhere to established subculture protocols for continued growth and maintenance of the cell line, ensuring reliable experimental outcomes.
Quality contro	l / Genetic profile / HLA

Sterility

Mycoplasma contamination is excluded using both PCR-based assays and luminescence-based mycoplasma detection methods.

To ensure there is no bacterial, fungal, or yeast contamination, cell cultures are subjected to daily visual inspections.

K562 Cells | 300224

STR profile	Amelogenin: x,x CSF1PO: 9,10 D13S317: 8 D16S539: 11,12 D5S818: 11,12 D7S820: 9,11 THO1: 9.3 TPOX: 8,9 vWA: 16 D3S1358: 16 D2IS11: 29,30 D18S51: 15 Penta E: 5,14 Penta D: 9,13 D8S1179: 12 FGA: 21,24 D1S1656: 15,16 D6S1043: 11,15 D2S1338: 17 D12S391: 23 D12S433: 14,14.2
HLA alleles	A*: 11:01:01, 31:01:02 B*: 18:01:01, 40:01:02 C*: 03:04:01, 05:01:01 DRB1*: 03:01:01, 04:04:01 DQA1*: 03:01:01, 05:01:01 DQB1*: 02:01:01, 03:02:01 DPB1*: 04:01:01G, 04:02:01G E: 01:03:02